MIT tries to make household robots better with object-detection algorithm

The technology could let robots better identify and handle objects

A new algorithm could let robots more precisely identify and handle objects around them, making them more useful at completing household tasks.

The algorithm, developed by Massachusetts Institute of Technology researchers and discussed in a paper released Monday, allows robots to gather multiple perspectives of an object, quickly aggregate those images and then use that information to identify the object, according to the school.

But don't expect the algorithm to help a robot clear plates and glasses from a table just yet, said Lawson Wong, a graduate student in electrical engineering and computer science, and the paper's lead author. "As it is now, it's still very far from commercialization," he said.

Improving object detection is just one step in equipping robots to complete house work.

For robots to perform useful tasks in the home, they have to know more than simply how many cups and plates are on the table, he said. If a robot was being used to prepare a meal, for example, it would also have to know what temperature to cook the food or where to find the recipe's ingredients.

Still, the algorithm could eventually help software better compute changes that occur in a home when people move objects and add or remove items.

"The software we use doesn't allow us to capture objects that move over time," said Wong.

Multiple-perspective algorithms allow a robot to identify up to four times as many objects than is possible using a single perspective, and these algorithms also help reduce mis-identifications, according to the researchers.

"If you run [images] through a standard view detection, you will miss a lot of objects," said Wong.

The algorithm also successfully addressed a downside of the multiple-perspective approach: that it can prove time-consuming because it increases exponentially the number of calculations the robot must make, often preventing the robot from completing tasks quickly enough.

The researchers noted that object detectors frequently fail although object recognition is one of the most researched topics in artificial intelligence.

Fred O'Connor writes about IT careers and health IT for The IDG News Service. Follow Fred on Twitter at @fredjoconnor. Fred's e-mail address is fred_o'connor@idg.com

Join the newsletter!

Or

Sign up to gain exclusive access to email subscriptions, event invitations, competitions, giveaways, and much more.

Membership is free, and your security and privacy remain protected. View our privacy policy before signing up.

Error: Please check your email address.

Tags roboticsMassachusetts Institute of Technology

Keep up with the latest tech news, reviews and previews by subscribing to the Good Gear Guide newsletter.

Fred O'Connor

IDG News Service
Show Comments

Most Popular Reviews

Latest Articles

Resources

PCW Evaluation Team

Cate Bacon

Aruba Instant On AP11D

The strength of the Aruba Instant On AP11D is that the design and feature set support the modern, flexible, and mobile way of working.

Dr Prabigya Shiwakoti

Aruba Instant On AP11D

Aruba backs the AP11D up with a two-year warranty and 24/7 phone support.

Tom Pope

Dynabook Portégé X30L-G

Ultimately this laptop has achieved everything I would hope for in a laptop for work, while fitting that into a form factor and weight that is remarkable.

Tom Sellers

MSI P65

This smart laptop was enjoyable to use and great to work on – creating content was super simple.

Lolita Wang

MSI GT76

It really doesn’t get more “gaming laptop” than this.

Featured Content

Don’t have an account? Sign up here

Don't have an account? Sign up now

Forgot password?