Quantum physics deployed in quest for fraud-proof credit cards

Researchers say attackers would be hard-pressed to hack a card with Quantum-Secure Authentication

Dutch researchers have developed an approach to secure credit cards that exploits properties of quantum physics.

Dutch researchers have developed an approach to secure credit cards that exploits properties of quantum physics.

Researchers in the Netherlands are applying quantum physics in an attempt to create fraud-proof credit cards and ID cards.

The approach, which they call Quantum-Secure Authentication (QSA), centers on single particles of light, or photons, and their ability to encode data so that attackers cannot determine what the information is. It exploits a property of photons that allows them to effectively be in multiple places at once, a phenomenon described in quantum physics.

"Quantum-physical principles forbid an attacker to fully characterize the incident light pulse," the researchers wrote in an article in the journal Optica. "Therefore, he cannot emulate the key by digitally constructing the expected optical response, even if all information about the key is publicly known."

The researchers at the University of Twente and Eindhoven University of Technology coated a credit card with a thin layer of white paint containing millions of nanoparticles. When light hits the nanoparticles, it bounces around until it escapes, creating a unique pattern that depends on the precise position of the particles in the paint. The card is "enrolled" in the system by recording the way that it reflects light.

To authenticate the card, a bank machine showers the paint with a pulse of light that is unique to each transaction. When the correct tell-tale pattern of light emerges as an "answer" to the bank's "question," the card can be authenticated.

While an attacker could measure the entire incoming light pattern and then use a projector to return the correct answer, the ability of photons to be in multiple places at once allows the bank to create the complex light question with only a small number of photons, or even just one. Due to the characteristics of quantum physics, an attempt to observe the question and answer process between a reader and the card would destroy the information in the transmission, making it more secure.

"Even if somebody has the full information of how the card is built, technology does not allow him to build a copy," lead author Pepijn Pinkse of the University of Twente said via email. "The nanoparticles are too small and there are too many of them which need to be positioned with too high accuracy."

The approach could be used in everything from authenticating passports to opening electronic locks on car doors or accessing secure areas such as government buildings.

Pinkse said paint would not be used in practise because it is too soft and not stable under temperature and humidity changes. White ceramics could do the job and remain stable and durable, he added.

The approach uses simple, relatively cheap and readily available technology such as lasers and projectors. Pinkse said that if mass-produced, a readout device wouldn't cost more than a projector phone at about US$1,000 since it has the necessary components.

Join the newsletter!

Or

Sign up to gain exclusive access to email subscriptions, event invitations, competitions, giveaways, and much more.

Membership is free, and your security and privacy remain protected. View our privacy policy before signing up.

Error: Please check your email address.

Tags University of TwenteEindhoven University of Technology

Keep up with the latest tech news, reviews and previews by subscribing to the Good Gear Guide newsletter.

Tim Hornyak

IDG News Service
Show Comments

Essentials

Mobile

Exec

Budget

Back To Business Guide

Click for more ›

Brand Post

Most Popular Reviews

Latest Articles

Resources

PCW Evaluation Team

Tom Pope

Dynabook Portégé X30L-G

Ultimately this laptop has achieved everything I would hope for in a laptop for work, while fitting that into a form factor and weight that is remarkable.

Tom Sellers

MSI P65

This smart laptop was enjoyable to use and great to work on – creating content was super simple.

Lolita Wang

MSI GT76

It really doesn’t get more “gaming laptop” than this.

Jack Jeffries

MSI GS75

As the Maserati or BMW of laptops, it would fit perfectly in the hands of a professional needing firepower under the hood, sophistication and class on the surface, and gaming prowess (sports mode if you will) in between.

Taylor Carr

MSI PS63

The MSI PS63 is an amazing laptop and I would definitely consider buying one in the future.

Christopher Low

Brother RJ-4230B

This small mobile printer is exactly what I need for invoicing and other jobs such as sending fellow tradesman details or step-by-step instructions that I can easily print off from my phone or the Web.

Featured Content

Don’t have an account? Sign up here

Don't have an account? Sign up now

Forgot password?