Researchers build featherweight chips that dissolve in water

The chips could one day be applied to the skin, heart or brain to diagnose and treat illnesses

A soluble integrated circuit developed at the University of Illinois at Urbana-Champaign

A soluble integrated circuit developed at the University of Illinois at Urbana-Champaign

Researchers in the U.S. have developed integrated circuits that can stick to the skin like a child's tattoo and in some cases dissolve in water when they're no longer needed.

The "bio chips" can be worn comfortably on the body to help diagnose and treat illnesses, said John Rogers, a professor of materials science at the University of Illinois at Urbana-Champaign, who described the research at an IEEE conference in San Francisco on Monday.

He and his students are working at the intersection of biology and electronics, experimenting with elements and compounds to come up with "epidermal electronics" that are soft and flexible, yet durable enough to be worn like a second skin.

The circuits are so thin that when they're peeled away from the body they hang like a sliver of dead skin, with a tangle of fine wires visible under a microscope. Similar circuits could one day be wrapped around the heart like "an electronic pericardium" to correct irregularities such as arrhythmia, Rogers said.

Silicon is usually too rigid to be molded to the body, but sliced to a nanometer thick, or a billionth of a meter, it becomes a "floppy" membrane that can bend and twist, Rogers said. It's still fragile, however, so it needs to be laid on a rubber-like substrate that gives it strength. And it still won't stretch, so the researchers form the circuits into ribbed structures that can flex back and forth like an accordion.

The circuits can be applied like a child's temporary tattoo, Rogers said, by laying them on the skin and washing off a thin, soluble backing. The resulting circuit is about 5 microns thick and can stretch by about 30 percent, equivalent to how much skin will stretch.

To show the technology, Rogers rolled up his sleeve during his talk and, using a microscope and an overhead projector, revealed a circuit stuck on his arm. It looked like a clear tattoo, with a spaghetti-like mass of wires embedded in the surface.

The researchers are also working on "transient" circuits that dissolve in water when they're no longer needed. Some are variations of the tattoo-like circuits but they can also take other forms.

Silicon, it turns out, is soluble in water when it's sliced thin enough, and a sliver of silicon 35 nanometers thick will dissolve in about two weeks, Rogers said. The substrate can be made from silk, magnesium, silicon dioxide or some other material that also becomes soluble when thin enough.

The soluble circuits have less of silicon, magnesium and other minerals than are in a daily vitamin pill, so they are safe in the body, Rogers said. To illustrate his point, he produced and then ate a tiny RF oscillator 5 millimeters across.

One possible application of the soluble electronics is to help prevent infections forming at surgical sites. A device could be implanted in the wound and programmed to emit bursts of heat sufficient to kill off bacteria. Because the device dissolves, there's no need for further surgery -- and further risk of infection -- to remove it.

Soluble electronics could also be used for non-medical purposes, such as environmental monitors at a chemical spill that eventually dissolve. Or they could be used in consumer electronics to reduce hazardous waste.

Rogers received the US$500,000 Lemelson-MIT Prize in 2011 for his work in bio-electronics.

James Niccolai covers data centers and general technology news for IDG News Service. Follow James on Twitter at @jniccolai. James's e-mail address is james_niccolai@idg.com

Join the newsletter!

Error: Please check your email address.
Rocket to Success - Your 10 Tips for Smarter ERP System Selection

Tags Componentshealth careprocessorsindustry verticalsUniversity of Illinois

Keep up with the latest tech news, reviews and previews by subscribing to the Good Gear Guide newsletter.

James Niccolai

IDG News Service
Show Comments

Cool Tech

Breitling Superocean Heritage Chronographe 44

Learn more >

SanDisk MicroSDXC™ for Nintendo® Switch™

Learn more >

Toys for Boys

Family Friendly

Panasonic 4K UHD Blu-Ray Player and Full HD Recorder with Netflix - UBT1GL-K

Learn more >

Stocking Stuffer

Razer DeathAdder Expert Ergonomic Gaming Mouse

Learn more >

Christmas Gift Guide

Click for more ›

Most Popular Reviews

Latest Articles

Resources

PCW Evaluation Team

Walid Mikhael

Brother QL-820NWB Professional Label Printer

It’s easy to set up, it’s compact and quiet when printing and to top if off, the print quality is excellent. This is hands down the best printer I’ve used for printing labels.

Ben Ramsden

Sharp PN-40TC1 Huddle Board

Brainstorming, innovation, problem solving, and negotiation have all become much more productive and valuable if people can easily collaborate in real time with minimal friction.

Sarah Ieroianni

Brother QL-820NWB Professional Label Printer

The print quality also does not disappoint, it’s clear, bold, doesn’t smudge and the text is perfectly sized.

Ratchada Dunn

Sharp PN-40TC1 Huddle Board

The Huddle Board’s built in program; Sharp Touch Viewing software allows us to easily manipulate and edit our documents (jpegs and PDFs) all at the same time on the dashboard.

George Khoury

Sharp PN-40TC1 Huddle Board

The biggest perks for me would be that it comes with easy to use and comprehensive programs that make the collaboration process a whole lot more intuitive and organic

David Coyle

Brother PocketJet PJ-773 A4 Portable Thermal Printer

I rate the printer as a 5 out of 5 stars as it has been able to fit seamlessly into my busy and mobile lifestyle.

Featured Content

Latest Jobs

Don’t have an account? Sign up here

Don't have an account? Sign up now

Forgot password?