Researcher runs IP network over xylophones

A University of California graduate student has shown how to transmit Internet packets by playing them on xylophones

Vint Cerf once wore a shirt that read "IP on Everything," a wry comment on the versatility of the Internet Protocol he helped invent, a protocol that underlies all Internet communication. Now a University of California Berkeley researcher has put Cerf's maxim to the test, running an IP network over a set of xylophones, played by human participants.

While not practical for everyday use, the experiment has helped both computer experts and novices alike better understand how computer networks operate, said R. Stuart Geiger, a graduate student at the Berkeley's School of Information who led the project.

Geiger discussed his work at the at the Association for Computing Machinery's Conference on Human Factors in Computing Systems, which was held this week in Austin, Texas.

The experiment "gave me an appreciation for how the Internet was designed. You can really take anything and put it anywhere," Geiger said, in an interview after the presentation.

Geiger's network protocol, Internet Protocol over Xylophone Players (IPoXP), provides a fully compliant IP connection between two computers. His setup uses a pair of Arduino microcontrollers, some sensors, a pair of xylophones and two people to play the xylophones.

In a typical setup, the computer will send a message packet to the microcontroller in the ACSII format, which the microcontroller converts into hexadecimal code. The Arduino is attached to a series of series of LED's. Each LED corresponds to a hexadecimal character, as well as a key on a xylophone.

As an LED lights up, the human participant strikes the corresponding key on the xylophone. Piezo sensors are attached to each xylophone, so that they are able to sense when a note is played on the other xylophone. The Arduino for the receiving computer senses the note and then converts it back into hexadecimal code. And when the second computer sends a return packet, the order of operations is reversed.

Characters are issued one every second, giving the network a throughput of one baud. Geiger used a simple pre-broadband legacy protocol called Slip to serialize the data with minimal overhead. Typically, it takes about 15 minutes to transmit a single packet at this rate -- if the volunteer is patient enough to complete a whole packet, and doesn't hit any wrong notes in the process. Such dedication and proficiency has turned out to be a rarity in trials, however. "Humans are really terrible interfaces," Geiger said. Geiger and his team ran two public demonstrations at the University of California.

From this project, Geiger has gained a newfound appreciation of the seven layer OSI (Open Systems Interconnection) model for computer communications. With OSI, each layer is encapsulated from the others, allowing new technologies to replace older ones without disrupting the system as a whole. In this exercise, humans operated layer 1, the physical layer, where the bits are physically moved from one system to another. To the two computers communicating, however, it made no difference that people were conveying the bits back and forth with their xylophones. "With a properly configured network interface and operating system, an application does not know -- and does not need to know -- the logistics of what is known as the physical layer," Geiger's paper stated.

The exercise also provided some insights into the field of Human-Computer Interaction (HCI), the focus of ACM's conference, Geiger said. It emulates a technique HCI specialists use to design interfaces called umwelt, which is a practice of imagining what the world must look like to the potential users of the interface.

This experiment allowed participants to get the feel for what it would be like to be a circuit. In fact, Geiger even put the xylophone players in black cardboard boxes to isolate them from their surroundings, where they could concentrate only on transmitting bits.

Umwelt "requires you to be empathetic with technology," Geiger said. "You put yourself in someone's or something's place by just thinking of what kind of sensory inputs and outputs they have."

Geiger is not the first to substitute an unusual technology at the base of a networking stack. In 2001, the Bergen Linux User Group used homing pigeons to network two computers located three miles apart. Another group used bongo drums to beat out a rhythm of 1's and 0's. And like these other whimsical approaches, IPoXP shows off the strengths of the Internet's design.

"I don't think I realized how robust and modular the OSI model is," Geiger said. "The Internet was designed for much more primitive technologies, but we haven't been able to improve on it, because it is such a brilliant model."

Joab Jackson covers enterprise software and general technology breaking news for The IDG News Service. Follow Joab on Twitter at @Joab_Jackson. Joab's e-mail address is

Join the newsletter!

Error: Please check your email address.
Rocket to Success - Your 10 Tips for Smarter ERP System Selection
Keep up with the latest tech news, reviews and previews by subscribing to the Good Gear Guide newsletter.

Joab Jackson

IDG News Service
Show Comments


James Cook University - Master of Data Science Online Course

Learn more >


Sansai 6-Outlet Power Board + 4-Port USB Charging Station

Learn more >

Victorinox Werks Professional Executive 17 Laptop Case

Learn more >



Back To Business Guide

Click for more ›

Most Popular Reviews

Latest Articles


PCW Evaluation Team

Louise Coady

Brother MFC-L9570CDW Multifunction Printer

The printer was convenient, produced clear and vibrant images and was very easy to use

Edwina Hargreaves

WD My Cloud Home

I would recommend this device for families and small businesses who want one safe place to store all their important digital content and a way to easily share it with friends, family, business partners, or customers.

Walid Mikhael

Brother QL-820NWB Professional Label Printer

It’s easy to set up, it’s compact and quiet when printing and to top if off, the print quality is excellent. This is hands down the best printer I’ve used for printing labels.

Ben Ramsden

Sharp PN-40TC1 Huddle Board

Brainstorming, innovation, problem solving, and negotiation have all become much more productive and valuable if people can easily collaborate in real time with minimal friction.

Sarah Ieroianni

Brother QL-820NWB Professional Label Printer

The print quality also does not disappoint, it’s clear, bold, doesn’t smudge and the text is perfectly sized.

Ratchada Dunn

Sharp PN-40TC1 Huddle Board

The Huddle Board’s built in program; Sharp Touch Viewing software allows us to easily manipulate and edit our documents (jpegs and PDFs) all at the same time on the dashboard.

Featured Content

Latest Jobs

Don’t have an account? Sign up here

Don't have an account? Sign up now

Forgot password?