MIT creates hybrid chip for faster processors

Combines silicon with gallium nitride to create a smaller, more efficient computer chip

Scientists at MIT have have used a combination of silicon and gallium nitride, a hard material frequently used in LEDs, to create a hybrid microchip that they say is smaller, faster and more efficient than today's processors.

Researchers around the world have been working for decades to create such a hybrid microchip that could help chipmakers keep Moore's Law alive .

The more than 40-year-old prediction by Gordon Moore holds that the number of transistors on a chip doubles about every two years. The predicted upgrades have continued since then, though some observers have long predicted that leakage and energy consumption could keep Moore's Law from continuing at some point.

However, if scientists can find new ways to increase efficiency while continuing to make the chips smaller and faster, then the law stands a much better chance of holding true for years ahead.

"We won't be able to continue improving silicon by scaling it down for long, so it's crucial to find other approaches," said Tomas Palacios, an assistant professor at MIT, in a statement late last week. He added that besides microprocessor chips, the new integrated technology also could lead to more efficient cell phone designs, for instance, by combining the functionality of several different chips onto one.

Jim McGregor, an analyst at In-Stat, said the new hybrid chip is important because it shows that the industry is moving beyond a singular silicon focus.

"We're really in a situation where we're now playing with the entire periodic table and experimenting with different combinations of materials," McGregor said. "The silicon is the basic building block that we put everything on. We've been messing around with the silicon and now we're adding something to it ... so we can change the properties and do things with the chip that we couldn't do before."

McGregor said he suspects that MIT's hybrid chip design could reduce leakage and thus increase chip performance.

"Chipmaking is becoming the ultimate chemistry and physics experiment," McGregor added. "We're using more and more parts of the periodic table and we're down to nanometers and looking at how many electrons can flow from transistor to transistor. It's important for the entire industry, which is focused on this type of research."

Join the newsletter!

Or

Sign up to gain exclusive access to email subscriptions, event invitations, competitions, giveaways, and much more.

Membership is free, and your security and privacy remain protected. View our privacy policy before signing up.

Error: Please check your email address.
Keep up with the latest tech news, reviews and previews by subscribing to the Good Gear Guide newsletter.
Sharon Gaudin

Sharon Gaudin

Computerworld (US)
Show Comments

Brand Post

Most Popular Reviews

Latest Articles

Resources

PCW Evaluation Team

Tom Pope

Dynabook Portégé X30L-G

Ultimately this laptop has achieved everything I would hope for in a laptop for work, while fitting that into a form factor and weight that is remarkable.

Tom Sellers

MSI P65

This smart laptop was enjoyable to use and great to work on – creating content was super simple.

Lolita Wang

MSI GT76

It really doesn’t get more “gaming laptop” than this.

Jack Jeffries

MSI GS75

As the Maserati or BMW of laptops, it would fit perfectly in the hands of a professional needing firepower under the hood, sophistication and class on the surface, and gaming prowess (sports mode if you will) in between.

Taylor Carr

MSI PS63

The MSI PS63 is an amazing laptop and I would definitely consider buying one in the future.

Christopher Low

Brother RJ-4230B

This small mobile printer is exactly what I need for invoicing and other jobs such as sending fellow tradesman details or step-by-step instructions that I can easily print off from my phone or the Web.

Featured Content

Don’t have an account? Sign up here

Don't have an account? Sign up now

Forgot password?