Stanford breakthrough could make better chips cheaper

A new process reduces the cost of making gallium arsenide chips and solar cells

Researchers at Stanford University have come up with a new way to make chips and solar panels using gallium arsenide, a semiconductor that beats silicon in several important areas but is typically too expensive for widespread use.

For several decades, silicon has been the go-to semiconductor for electronics. It's abundant and cheap, and manufacturing processes are well understood, but it's not always the best choice.

Electrons move faster through gallium arsenide than through silicon, which makes it better suited for chips handling data at very high speeds or high-frequency radio signals. Solar panels based on gallium arsenide are more efficient than silicon panels at converting light to electricity.

Gallium arsenide is also pricey. An 8-inch disc on which chips and panels are made costs about US$5,000, versus just $5 for a similar silicon wafer, said Aneesh Nainani, who teaches semiconductor manufacturing at Stanford.

The new manufacturing method won't make the wafer any cheaper, but it does allow it to be reused roughly 50 to 100 times, dramatically reducing the per-chip cost and opening up gallium arsenide for wider use.

Here's how it works:

Researchers start with a gallium arsenide wafer and apply a thin layer of a disposable material. On top of that, they apply a layer of an infrared-absorbing material, and then another disposable layer. Finally, on top of these three layers, a thin gallium arsenide layer is deposited. Circuits are built on this final layer, just as they normally are built directly on the wafer.

Next, the uppermost disposable layer is etched so that the many circuits become individual chips. Then, an infrared laser blasts the infrared-absorbing layer, breaking it down so the chips can be separating from the underlying wafer. The remaining wafer is cleaned and is then ready for the next batch of chips.

The process is shown in a YouTube animation from Stanford.

Because the resulting chips are made out of a thin layer of gallium arsenide rather than a full wafer, they are cheaper to produce. As a side benefit, they are also flexible.

Stanford has applied for patents on the process and is already talking to semiconductor chip makers about licensing it for testing and eventual use in commercial production.

Martyn Williams covers mobile telecoms, Silicon Valley and general technology breaking news for The IDG News Service. Follow Martyn on Twitter at @martyn_williams. Martyn's e-mail address is martyn_williams@idg.com

Join the Good Gear Guide newsletter!

Error: Please check your email address.

Tags ComponentsprocessorsStanford Universitymemory

Our Back to Business guide highlights the best products for you to boost your productivity at home, on the road, at the office, or in the classroom.

Keep up with the latest tech news, reviews and previews by subscribing to the Good Gear Guide newsletter.

Martyn Williams

IDG News Service
Show Comments

Cool Tech

Crucial Ballistix Elite 32GB Kit (4 x 8GB) DDR4-3000 UDIMM

Learn more >

Gadgets & Things

Lexar® Professional 1000x microSDHC™/microSDXC™ UHS-II cards

Learn more >

Family Friendly

Lexar® JumpDrive® S57 USB 3.0 flash drive 

Learn more >

Stocking Stuffer

Plox Star Wars Death Star Levitating Bluetooth Speaker

Learn more >

Christmas Gift Guide

Click for more ›

Most Popular Reviews

Latest News Articles

Resources

GGG Evaluation Team

Kathy Cassidy

STYLISTIC Q702

First impression on unpacking the Q702 test unit was the solid feel and clean, minimalist styling.

Anthony Grifoni

STYLISTIC Q572

For work use, Microsoft Word and Excel programs pre-installed on the device are adequate for preparing short documents.

Steph Mundell

LIFEBOOK UH574

The Fujitsu LifeBook UH574 allowed for great mobility without being obnoxiously heavy or clunky. Its twelve hours of battery life did not disappoint.

Andrew Mitsi

STYLISTIC Q702

The screen was particularly good. It is bright and visible from most angles, however heat is an issue, particularly around the Windows button on the front, and on the back where the battery housing is located.

Simon Harriott

STYLISTIC Q702

My first impression after unboxing the Q702 is that it is a nice looking unit. Styling is somewhat minimalist but very effective. The tablet part, once detached, has a nice weight, and no buttons or switches are located in awkward or intrusive positions.

Featured Content

Latest Jobs

Don’t have an account? Sign up here

Don't have an account? Sign up now

Forgot password?