Smartphone chips could replace server processors in HPC, researchers say

Looking at historical trends and benchmark tests, researchers say cellphone chips may eventually be used in supercomputers
  • (IDG News Service)
  • — 24 May, 2013 20:42
Mobile processors interesting for HPC -- Barcelona Supercomputing Center presentation (slide 8)

Mobile processors interesting for HPC -- Barcelona Supercomputing Center presentation (slide 8)

  • Mobile processors interesting for HPC -- Barcelona Supercomputing Center presentation (slide 8)
  • ARM vs Intel, multicore performance benchmarks -- Barcelona Supercomputing Center presentation (slide 7)
  • ARM vs Intel, single-core performance benchmarks -- Barcelona Supercomputing Center presentation (slide 6)
  • Mobile processors may knock out industry-standard processors -- Barcelona Supercomputing Center presentation (slide 5)
  • Microprocessors killed vector processors -- Barcelona Supercomputing Center presentation (slide 4)
  • Commodity components drive HPC -- Barcelona Supercomputing Center presentation (slide 3)
  • Commodity processors bump vector processors from supercomputers -- Barcelona Supercomputing Center presentation (slide 2)
  • Vector processors dominate HPC -- BSC presentation (slide 1)

Looking at historical trends and performance benchmarks, a team of researchers in Spain have concluded that smartphone chips could one day replace the more expensive and power-hungry x86 processors used in most of the world's top supercomputers.

"History may be about to repeat itself," researchers at the Barcelona Supercomputing Center wrote in a paper titled "Are mobile processors ready for HPC?" The paper was presented at the EDAworkshop13 in Dresden, Germany, this month.

The researchers point to the history of less expensive chips bumping out faster but higher-priced processors in high-performance systems. In 1993, the list of the world's fastest supercomputers, known as the Top500, was dominated by systems based on vector processors. They were nudged out by less expensive RISC processors like IBM's Power chip, whose use in supercomputers peaked early in the past decade. The RISC chips in turn were eventually replaced by cheaper commodity processors like Intel's Xeon and Advanced Micro Devices' Opteron, which today are used in more than 400 supercomputers on the Top500 list.

The transitions had a common thread, the researchers wrote: Microprocessors killed the vector supercomputers because they were "significantly cheaper and greener," they said.

"Mobile processors are not faster ... but they are significantly cheaper," the researchers wrote.

Low-power chips based on designs from U.K. chip company ARM are used in most smartphones and tablets sold today. Intel has found some limited success with its Atom processor, which was originally designed for netbooks and is still based on its x86 architecture.

Interest in using mobile processors in servers is mounting as companies look to reduce data-center power bills. Smartphone chips are seen by some as well-suited for workloads that involve high volumes of small transactions, like dishing up search results and processing "likes" on social networks. Beefier chips like the Xeon and Opteron are seen as best for software that requires more performance, such as large database applications and ERP (enterprise resource planning) systems.

One of the goals at the Barcelona Supercomputing Center (BSC) is to build prototype systems that help improve performance-per-watt. The organization, funded by the Spanish government and the European Union, has built servers based on Nvidia's quad-core Tegra 3 chip, which uses an ARM Cortex-A9 processor design, and another on Samsung's dual-core Exynos 5, based on the faster Cortex-A15.

As well as looking at history, their prediction about smartphones chips is based on benchmark results. They compared Samsung's 1.7GHz dual-core Exynos 5250, Nvidia's 1.3GHz quad-core Tegra 3 and Intel's 2.4GHz quad-core Core i7-2760QM -- which is a desktop chip, rather than a server chip.

The researchers said they found that ARM processors were more power-efficient on single-core performance than the Intel processor, and that ARM chips can scale effectively in HPC environments. On a multi-core basis, the ARM chips were as efficient as Intel x86 chips at the same clock frequency, but Intel was more efficient at the highest performance level, the researchers said..

In a battle between two ARM chips, the Nvidia Tegra 3 chip was compared to Samsung's Exynos 5250. The Exynos 5250 was 1.7 times faster than the Tegra 3 on single-core performance.

Hewlett-Packard recently launched its Moonshot server, which is based on Intel's low-power Atom server chip. ARM processors from Calxeda and Texas Instruments are expected to be used in future Moonshot systems. Dell has also built prototype ARM servers and is contemplating use of the low-power chips in supercomputers.

The BSC researchers point to weaknesses in ARM designs that may hold up their use in servers. Today's ARM chips are 32-bit designs, meaning the amount of memory they can address is limited. They also lack error correction technologies, have no network off-load chip, and do not use standard I/O interfaces.

ARM has announced a 64-bit design, however, and Calxeda, AMD and AppliedMicro are among the chip makers expected to ship 64-bit ARM chipsets with an array of I/O and networking features.

As the ARM server market evolves, the technical challenges will be resolved, according to the researchers, and increased competition could further drive down prices.

"Mobile processors have qualities that make them interesting for HPC," the researchers wrote, advising readers to "get ready for the change, before it happens."

BSC is also involved in Project Mont-Blanc and the Axle Project, which are efforts to develop supercomputers that combine the processing power of CPUs, graphics processors and other computing resources.

Agam Shah covers PCs, tablets, servers, chips and semiconductors for IDG News Service. Follow Agam on Twitter at @agamsh. Agam's e-mail address is agam_shah@idg.com

Keep up with the latest tech news, reviews and previews by subscribing to the Good Gear Guide newsletter.

Agam Shah

IDG News Service
Topics: supercomputers, High performance, Advanced Micro Devices, hardware systems, Components, intel, processors
Comments are now closed.

Latest News Articles

Most Popular Articles

Follow Us

GGG Evaluation Team

Kathy Cassidy

STYLISTIC Q702

First impression on unpacking the Q702 test unit was the solid feel and clean, minimalist styling.

Anthony Grifoni

STYLISTIC Q572

For work use, Microsoft Word and Excel programs pre-installed on the device are adequate for preparing short documents.

Steph Mundell

LIFEBOOK UH574

The Fujitsu LifeBook UH574 allowed for great mobility without being obnoxiously heavy or clunky. Its twelve hours of battery life did not disappoint.

Andrew Mitsi

STYLISTIC Q702

The screen was particularly good. It is bright and visible from most angles, however heat is an issue, particularly around the Windows button on the front, and on the back where the battery housing is located.

Simon Harriott

STYLISTIC Q702

My first impression after unboxing the Q702 is that it is a nice looking unit. Styling is somewhat minimalist but very effective. The tablet part, once detached, has a nice weight, and no buttons or switches are located in awkward or intrusive positions.

Resources

Best Deals on GoodGearGuide

Compare & Save

Deals powered by WhistleOut
WhistleOut

Latest Jobs

Don’t have an account? Sign up here

Don't have an account? Sign up now

Forgot password?