Graphene modulators could break network speed limits

University of California, Berkeley researchers development could increase networking speeds by up to 10 times
  • (PC World (US online))
  • — 09 May, 2011 07:18

Fiber optic networks are at the forefront of record-setting Internet speeds. Now the scientists at the University of California, Berkeley have developed a graphene modulator that could push the curve forward by a ten-fold leap.

The team electrically tuned the atom-thick layers of carbon to absorb light at wavelengths used in data communication. The graphene medium was then fashioned into modulators and placed into tiny optical network cables to switch the light transmitting the data on and off.

"Graphene enables us to make modulators that are incredibly compact and that potentially perform at speeds up to ten times faster than current technology allows,” explained UC Berkeley engineering professor Xiang Zhang, who led the research group. “This new technology will significantly enhance our capabilities in ultrafast optical communication and computing."

The data transfer speed is dependent on how quickly the modulator can pulse the light. Inside of the optical cables, a modulator switches from transparent and opaque as its electrons are charged. The researchers found that graphene modulator achieved a modulation speed of 1 gigahertz and could theoretically reach as high as 500 gigahertz (500 billion cycles a second).

Thanks to the tiny 25-square-micron size of these graphene modulators, optical cables could do away with the modulators measuring in millimeters used now. In effect, the optic cables could be shrunk which could potentially reduce their capacitance -- the ability to hold an electric charge -- and lead to faster data transmission.

Zhang’s colleague Feng Wang, assistant professor of physics and head of the Ultrafast Nano-Optics Group at UC Berkeley, added that the graphene could be tuned to other frequencies. “Graphene can also be used to modulate new frequency ranges, such as mid-infrared light, that are widely used in molecular sensing."

Graphene itself is already a highly regarded element in electronics since its discovery in 2004; as it is flexible, the thinnest and strongest crystalline material, pliable like rubber, compatible with silicon, and an excellent conductor of heat and electricity. In addition researches posited that the graphene material is cheap and easy produce.

Min Liu, a post-doctoral researcher in Zhang's lab and co-lead author of the study elaborated on “the graphite in a pencil can provide enough graphene to fabricate 1 billion optical modulators."

Get your GeekTech on: Twitter - Facebook - RSS | Tip us off

Keep up with the latest tech news, reviews and previews by subscribing to the Good Gear Guide newsletter.

Kevin Lee

PC World (US online)
Topics: Berkeley, Networking, University of California, Tech industry
Comments are now closed.

Latest News Articles

Most Popular Articles

Follow Us

GGG Evaluation Team

Kathy Cassidy

STYLISTIC Q702

First impression on unpacking the Q702 test unit was the solid feel and clean, minimalist styling.

Anthony Grifoni

STYLISTIC Q572

For work use, Microsoft Word and Excel programs pre-installed on the device are adequate for preparing short documents.

Steph Mundell

LIFEBOOK UH574

The Fujitsu LifeBook UH574 allowed for great mobility without being obnoxiously heavy or clunky. Its twelve hours of battery life did not disappoint.

Andrew Mitsi

STYLISTIC Q702

The screen was particularly good. It is bright and visible from most angles, however heat is an issue, particularly around the Windows button on the front, and on the back where the battery housing is located.

Simon Harriott

STYLISTIC Q702

My first impression after unboxing the Q702 is that it is a nice looking unit. Styling is somewhat minimalist but very effective. The tablet part, once detached, has a nice weight, and no buttons or switches are located in awkward or intrusive positions.

Resources

Best Deals on GoodGearGuide

Compare & Save

Deals powered by WhistleOut
WhistleOut

Latest Jobs

Don’t have an account? Sign up here

Don't have an account? Sign up now

Forgot password?